Exercise 2

Find the three cube roots $c_{k}(k=0,1,2)$ of $-8 i$, express them in rectangular coordinates, and point out why they are as shown in Fig. 15.

$$
\text { Ans. } \pm \sqrt{3}-i, 2 i .
$$

FIGURE 15

Solution

For a nonzero complex number $z=r e^{i(\Theta+2 \pi k)}$, its nth roots are

$$
z^{1 / n}=\left[r e^{i(\Theta+2 \pi k)}\right]^{1 / n}=r^{1 / n} \exp \left(i \frac{\Theta+2 \pi k}{n}\right), \quad k=0,1,2, \ldots, n-1 .
$$

The magnitude of $-8 i$ is 8 , and the principal argument is $-\pi / 2$.

$$
(-8 i)^{1 / 3}=8^{1 / 3} \exp \left(i \frac{-\pi / 2+2 \pi k}{3}\right), \quad k=0,1,2
$$

The first, or principal, root $(k=0)$ is

$$
(-8 i)^{1 / 3}=8^{1 / 3} e^{-i \pi / 6}=2\left(\cos \frac{\pi}{6}-i \sin \frac{\pi}{6}\right)=2\left(\frac{\sqrt{3}}{2}-i \frac{1}{2}\right)=\sqrt{3}-i=c_{0},
$$

the second root $(k=1)$ is

$$
(-8 i)^{1 / 3}=8^{1 / 3} e^{i \pi / 2}=2\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)=2(0+i)=2 i=c_{1},
$$

and the third root $(k=2)$ is

$$
(-8 i)^{1 / 3}=8^{1 / 3} e^{i 7 \pi / 6}=2\left(\cos \frac{7 \pi}{6}+i \sin \frac{7 \pi}{6}\right)=2\left(-\frac{\sqrt{3}}{2}-i \frac{1}{2}\right)=-\sqrt{3}-i=c_{2} .
$$

Plotting each of these roots on the complex plane gives Fig. 15.

